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The electrostatic continuum solvent model developed by �Fattebert and Gygi J. Comput. Chem. 23,
662 �2002�; Int. J. Quantum Chem. 93, 139 �2003�� is combined with a first-principles formulation
of the cavitation energy based on a natural quantum-mechanical definition for the surface of a
solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be
in remarkable agreement with that obtained by more complex algorithms relying on a large set of
parameters. Our model allows for very efficient Car-Parrinello simulations of finite or extended
systems in solution and demonstrates a level of accuracy as good as that of established
quantum-chemistry continuum solvent methods. We apply this approach to the study of
tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights
on the dimerization phenomenon. © 2006 American Institute of Physics. �DOI: 10.1063/1.2168456�
I. INTRODUCTION

The importance of electronic-structure calculations in
solution is self-evident: chemistry in nature and in the labo-
ratory often takes place in water or other solvents, or at a
solid-solvent interface. This is true for all of biochemistry,
for most of organic, inorganic, and analytical chemistry, and
for a vast part of materials and surface sciences. The natural
solution to this problem is to explicitly include the solvent
molecules in the system, either as one or several solvation
shells or as a bulk medium that fills the simulation box in
periodic-boundary conditions. Such approach rapidly in-
creases the expense of the calculation and is not always af-
fordable. The reasons are twofold: the cost of an electronic-
structure calculation scales as the cube of the number of
atoms considered, at fixed density. Also, one needs to ensure
that the solvent is treated appropriately as a liquid medium,
using, e.g., extensive Monte Carlo or molecular-dynamics
simulations. Given the large ratio between the number of
degrees of freedom in the solvent versus the solute, the sta-
tistical accuracy needed makes most of these approaches pro-
hibitively expensive. The use of hybrid quantum-mechanical/
molecular-mechanics �QM/MM� techniques,1–3 in which the
solvent atoms are represented with point �or Gaussian�
charges and classical potentials, can sensibly alleviate the
cost of the computations, but does not remove the require-
ment of long dynamical trajectories of the combined quan-
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tum and classical fragments to simulate the liquid state of the
solvent and to extract thermodynamical averages.

Alternative to these explicit approaches, a description of
the solvent as a continuum dielectric medium surrounding a
quantum-mechanical solute has long been established and
has proved efficient and accurate in a diversity of cases.4–7 In
continuum schemes the dielectric fills the space outside a
cavity where the solute is confined; the shape of this cavity,
considered as a single sphere8 or ellipsoid in early implemen-
tations, has evolved to more realistic molecular shapes such
as those defined by interlocking spheres centered on the at-
oms or by isosurfaces of the electron density.4,6 In the con-
text of continuum models the interaction between the dielec-
tric medium and the charge distribution of the solute
provides the electrostatic part of the solvation free energy
�Gel, which is the dominant contribution for polar and
charged solutes. Solvation effects beyond electrostatic
screening, conventionally partitioned in cavitation, disper-
sion, and repulsion,6 are also important and will be discussed
in the context of our model in Sec. II. In principle, the ap-
plication of continuum models demands that no strong spe-
cific interactions are present between the solvent and the sol-
ute molecules, although the solvent can always be
reintroduced explicitly as an “environmental” skin for the
first solvation shells.

Inexpensiveness is not the single asset of continuum
models against explicit solvent methods. Unless Monte Carlo

or molecular-dynamics techniques are used, it is often un-
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clear what orientation to choose for the molecules in an ex-
plicit solvent model, and even for a medium-sized solute
there may be a large number of possible configurations with
multiple local minima.7 More importantly, geometry relax-
ations will describe solid or glassy phases for the solvent,
with a mostly electronic dielectric screening that may differ
substantially from its static limit. This is particularly true for
water, where the static permittivity �0 of the liquid is larger
by a factor of 20 than its electronic �� contribution. When
geometry optimizations including many solvent molecules
are performed, changes in the solute—e.g., the hydration
energy—remain “buried” or hidden by the large contribu-
tions coming from the energy of the solvent. To extract
meaningful information, Monte Carlo or molecular-dynamics
simulations with accurate thermalizations and averaging
times are necessary. Still, it is far from clear that even first-
principles molecular-dynamics treatments of a solvent would
provide the accuracy needed to reproduce static screening as
a function of temperature �as an example, the dielectric con-
stant of water varies between 87.8 at 0 °C and 55.8 at
100 °C�. Room temperature is well below the Debye tem-
perature of many solvents, and thus the effect of quantum,
Bose-Einstein statistics can be very important. In fact, recent
first-principles molecular-dynamics studies of water point to
the fact that a combination of inaccuracies in the quantum-
mechanical models �such as density-functional theory in
generalized-gradient approximations� and the use of Boltz-
mann statistics produce an overstructured description of
water,9–11 with apparent freezing roughly a hundred degrees
above the experimental point. Last, the relaxation times
needed to extract thermodynamical data from a solvated sys-
tem can be exceedingly long,12 compounding many of the
issues highlighted here. Continuum solvent methods are free
from these issues, and for this reason alone they may be the
first choice even when computational resources are not the
main constraint. On the other hand, the assumption that the
solvent is at all times equilibrated to the solute, linked to the
very nature of continuum solvent models, can also be a
drawback: the relaxation times of the solvent might affect the
solute dynamics in a way that the static screening in conven-
tional continuum models will not be able to predict. An in-
teresting possibility would be to introduce a dynamical
screening which takes into account solvent relaxation times
via a frequency-dependent dielectric constant. The validation
of such a framework, though an attractive subject for future
research, would require careful testing against extensive
molecular-dynamics runs with an explicit solvent and goes
beyond the scope of the present paper.

The presence of a polarizable dielectric will induce a
charge redistribution in the solute, which in turn will affect
the polarization of the medium. In the self-consistent reac-
tion field �SCRF� approach the dielectric medium and the
electronic density respond to the electrostatic field of each
other in a self-consistent fashion.4 Over the past 25 years a
number of developments stemming from the SCRF approach
have been proposed and further elaborated.13–23 Among
these, the polarizable-continuum model �PCM� of Tomasi
and co-workers5,13,19 and the conductorlike solvation model

17
�COSMO� of Klamt and Schüürmann are probably the
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most widely used choices in quantum-chemistry applica-
tions. In both cases the dielectric constant � is taken to be 1
inside the cavity, and a fixed value outside �equal to the
dielectric constant of the solvent for PCM, or infinite for the
case of COSMO�. The electrostatic problem is then formu-
lated in terms of apparent surface charges �ASCs� distributed
on the solute-solvent interface. For first-principles
molecular-dynamics applications, the discontinuity of � at
the interface needs to be removed to calculate accurately the
analytic derivatives of the potential with respect to the ionic
positions. This may be accomplished with the use of a
smoothly varying dielectric potential that restores well-
behaved analytic gradients.21 Still, Born-Oppenheimer ab
initio molecular dynamics in localized basis sets are demand-
ing enough that they have yet to be combined, to the best of
our knowledge, with the ASC approach for realistic simula-
tions of medium or large system.

On the other hand, first-principles implementations of
the continuum solvent model within the Car-Parrinello
framework24 have been devised,25–28 even though dynamical
studies have been reported, to the best of our knowledge, in
only few cases.26,27 In this paper, we introduce a first-
principles and conceptually simple approach to the calcula-
tion of cavitation energies based on the definition of a quan-
tum surface for the solvent.29 We combine this scheme with
the electrostatic solvation model of Fattebert and Gygi26,30

and find a level of accuracy at least as good as that of estab-
lished quantum-chemistry treatments. The model requires no
adjustable parameters other than a universal definition of the
cavity �practically depending on one parameter� and the di-
electric constant and the surface tension of the solvent. This
combined model is well suited for first-principles molecular-
dynamics calculations of large finite and extended systems,
using, e.g., efficient plane-wave Car-Parrinello implementa-
tions. In the following sections we describe the method and
examine its performance in comparison with experiments
and with the well-established PCM approach. Finally, given
that cavitation contributions can be particularly important in
dimerization processes �where the fusion of two cavities into
one provides an additional stabilizing energy�, we employ
our method to study the association of the tetracyanoethylene
�TCNE� anion in solution31 by means of static and dynamical
simulations, highlighting the role of the cavitation term in
the dimerization.

II. THE MODEL AND ITS CONTEXT

A. Preliminary details

Our continuum solvation model has been implemented
in the public domain Car-Parrinello parallel code included in
the QUANTUM-ESPRESSO package,32 based on density-
functional theory �DFT�, periodic-boundary conditions,
plane-wave basis sets, and pseudopotentials to represent the
ion-electron interactions. All the calculations reported in this
work, unless otherwise noted, have been performed using the
PBE exchange-correlation functional30 and Vanderbilt ultra-
soft pseudopotentials,34 with the Kohn-Sham orbitals and
charge density expanded in plane waves up to kinetic energy

cutoffs of 25 and 200 Ry, respectively. In the Appendix we
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review the formalism used to calculate energies and forces in
periodic-boundary conditions in the context of our imple-
mentation. Further details can be found in Ref. 35.

We adopt the definition introduced by Ben-Naim for the
solvation free energy,36 in which �Gsol corresponds to the
process of transferring the solute molecule from a fixed po-
sition in the gas phase to a fixed position in the solution at
constant temperature, pressure, and chemical composition.
For calculation purposes and especially in the case of the
continuum dielectric model, �Gsol can be regarded as the
sum of several components, of which the electrostatic, the
cavitation, and the dispersion-repulsion contributions are the
most relevant ��Gsol=�Gel+�Gcav+�Gdis-rep�.

37 None of
these, however, can be directly obtained through experiment,
the sum of all of them �Gsol being the only measurable quan-
tity. In our model, �Gel and �Gcav are considered explicitly,
while �Gdis-rep, less relevant for the systems considered here,
is largely seized by virtue of the parameterization, as part of
the electrostatic term. The dispersion-repulsion energy may
be important in the case of hydrophobic and aromatic spe-
cies, but its explicit calculation is beyond the aim of the
present work—in particular, the implementation of the tech-
nique proposed by Floris and Tomasi38 and Floris et al.39

would be straightforward in our model.

B. Electrostatic solvation energy

The electrostatic interaction between the dielectric and
the solute is calculated as proposed by Fattebert and
Gygi.26,30 In the following we provide an outline of the
model.

The Kohn-Sham energy functional40 of a system of ions
and electrons can be written as

E��� = T��� +� ��r���r�dr + Exc +
1

2
� ��r�����dr ,

�1�

where the terms on the right-hand side correspond to the
kinetic energy of the electrons, the interaction energy with
the ionic potential, the exchange-correlation energy, and the
electrostatic energy Ees, respectively. In the standard energy
functional, the electrostatic potential ���� is the solution to
the Poisson equation in vacuum,

�2� = − 4�� . �2�

In the presence of a dielectric continuum with a permittivity
����, the Poisson equation becomes

� · ����� � �� = − 4�� . �3�

By inserting the charge density obtained from Eq. �3� into
the expression for the electrostatic energy and integrating by
parts, we obtain

Ees =
1

8�
� �����������2dr . �4�

While Eq. �2� can be efficiently solved in reciprocal space
with the use of fast Fourier transforms, for arbitrary ���� the
Poisson equation �3� must be solved with an alternative nu-

merical scheme. In the present case, it is discretized on a
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real-space grid and solved iteratively using a multigrid
technique.26 The functional derivative of Ees with respect to
� yields � and an additional term V�, originating in the de-
pendence of the dielectric function on the charge density,

�Ees

��
�r� = ��r� + V��r� , �5�

V��r� = −
1

8�
����r��2 ��

��
�r� . �6�

The self-consistent Kohn-Sham potential is constructed sum-
ming V� and the electrostatic potential �, to which contribu-
tions from the exchange-correlation and the local and nonlo-
cal terms in the pseudopotentials are also added �see
Appendix�. The dielectric medium and the electronic density
then respond self-consistently to each other through the de-
pendence of � on � and vice versa.

As already mentioned in the Introduction, in Gaussian
basis sets implementations of the continuum model � is a
binary function with a discontinuity at the cavity surface.
The accurate representation of such a function would require
unrealistic high kinetic-energy cutoffs for the plane-wave ba-
sis and expensive real-space grids. The use of smoothly vary-
ing dielectric functions instead eases the numerical load and
avoids discontinuities in the forces, essential to proper en-
ergy conservation during molecular-dynamics simulations.
Also, a smooth decay of the permittivity in the proximity of
the solute-solvent boundary may even be considered a more
physical representation than a sharp discontinuity. In our
implementation the dielectric medium is defined using two
parameters �0 and 	:

����r�� = 1 +
�� − 1

2
�1 +

1 − ���r�/�0�2	

1 + ���r�/�0�2	� . �7�

This function asymptotically approaches �� �the permittivity
of the bulk solvent� in regions of space where the electron
density is low, and 1 in those regions where it is high. The
parameter �0 is the density threshold determining the cavity
size, whereas 	 modulates the smoothness of the transition
from �� to 1.

C. Cavitation energy

The cavitation energy �Gcav is defined as the work in-
volved in creating the appropriate cavity inside the solution
in the absence of solute-solvent interactions.5 Different ap-
proaches have been introduced to compute �Gcav; neverthe-
less it is unclear which one is the most accurate given the
unavailability of experimental values to compare. Formula-
tions based on the scaled particle theory41,42 have been origi-
nally proposed by Pierotti42 and further developed in several
studies.44–48 Although these approaches are derived from a
rigorous statistical mechanics standpoint, eventually the use
of a set of fitted parameters is needed to represent an effec-
tive radius for the solvent and for the spheres centered on the
solute atoms. For nonspherical cavities, one of the most used

6,44
approximations is the so-called Pierotti-Claverie formula
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�Gcav = �
k=1

N
Ak

4�Rk
2Gcav�Rk� . �8�

Equation �8� describes the cavity as the volume occupied by
N interlocked spheres centered on the atoms; Ak is the area of
atom k exposed to the solvent, Rk is its van der Waals radius,
and Gcav�Rk� is the cavitation free energy associated with the
creation of a spherical cavity of radius Rk according to
Pierotti.43

Efforts have also been made to describe �Gcav as a func-
tion of the macroscopic surface tension of the solvent 
.49–51

The suggestion of Uhlig49 of expressing the work involved in
producing the cavity as the product between 
 and the area
of a sphere, �Gcav=4�R2
, has been extended to account for
the curvature of the solute-solvent interface, according to the
theory of Tolman for the surface tension of a droplet.52 The
validity of simplified expressions of the kind

�Gcav = PV + 4�R2
̄�1 −
2�

R
� �9�

has been investigated by different authors53,54 by means of
Monte Carlo simulations with classical potentials. In Eq. �9�,

 is an effective surface tension for the interface, R is the
radius of the cavity, and � is a coefficient that would corre-
spond to the Tolman length in the case of a macroscopic
surface. Studies from both Floris et al.53 and Huang et al.54

have shown that 
̃ is essentially indistinguishable from the
macroscopic surface tension of the solvent 
. Their simula-
tions have assigned to � a value of 0.0 in TIP4P water,53 and
of the order of −0.5� in the case of different Lennard-Jones
fluids �� being the Lennard-Jones radius�,54 suggesting that
the curvature correction can in practice be ignored for cavi-
ties with radii above only a few angstroms.

In view of these results, we have chosen to estimate the
cavitation energy as the product between the surface tension
and the area of the cavity,

�Gcav = 
S��0� , �10�

where S��0� is the surface of the same cavity employed in the
electrostatic part of the solvation energy and is defined by an
isosurface of the charge density. As observed by Floris et
al.,53 there is always a surface in between the internal and the
solvent accessible surfaces such that the correction factor
�1− �2� /R�� reduces to 1, entailing a linear dependence be-
tween �Gcav and the cavity area. We rely on the parametri-
zation of the density threshold �0 to obtain an appropriate
surface.

The area of this cavity can be easily and accurately cal-
culated by integration in a real-space grid, as the volume of a
thin film delimited between two charge-density isosurfaces,
divided by the thickness of this film. This idea has been
originally proposed by Cococcioni et al.29 to define a “quan-
tum surface” in the context of extended electronic-enthalpy

functionals,
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S��0� =� dr	��0−�/2���r�� − ��0+�/2���r��
 
����r��

�
.

�11�

The finite-difference parameter � determines the separation
between two adjacent isosurfaces, one external and one in-
ternal, corresponding to density thresholds �0−� /2 and �0

+� /2, respectively. The spatial distance between these two
cavities—or the thickness of the film—is given at any point
in space by the ratio � / ����. The �smoothed� step function �
is zero in regions of low electron density and approaches 1
otherwise, and it has been defined consistently with the di-
electric function of Eq. �7�,

����r�� =
1

2
� ���r�/�0�2	 − 1

���r�/�0�2	 + 1
+ 1 . �12�

Note that the volume of the cavity is simply the integral of �
on all the space

Vc��0� =� dr��0
���r�� . �13�

The functional derivative of �Gcav=
S��� with respect to the
density gives then the additional contribution to the Kohn-
Sham potential,

��Gcav

��
�r� =




�
 ���0−�/2���r�� − ��0+�/2���r���

 ��
i

�
j

�i��r�� j��r��i� j��r�
����r��3

− �
i

�i
2��r�

����r�� , �14�

where the indices i and j run over the x, y, and z coordinates,
and �i indicates a partial derivative with respect to the posi-
tion.

The exact value of the discretization � is not important,
as long as it is chosen within certain reasonable limits—a
very low value would introduce numerical noise, while a too
large one would render an inaccurate measure of the surface.
The freedom in the choice of � is illustrated in Fig. 1, where
the dependence of S on this parameter is examined for a
water molecule at various thresholds. For �0 equal or above
0.000 48e, the calculation of the cavity area is fairly con-
verged for any value of � within the range displayed in the
figure. We have adopted a value of �=0.0002e in our simu-
lations. It is worth noting, on the other hand, that the depen-
dence of the surface on the density threshold �0 is only mod-
erate, reflecting the fact that at the “molecular boundary,” the
electron density decays significantly on a short distance. This
behavior is portrayed in Fig. 1, where it can be seen that for
a given �, the calculated surfaces change in only about 25%
when �0 is increased three times. �Gcav is, in fact, much less

sensitive to the electron-density threshold than �Gel.
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III. RESULTS AND DISCUSSION

A. Solvation energies in water

The only adjustable parameters in our solvation model
are �0 and 	, which determine the shape of the cavity ac-
cording to Eqs. �7� and �12�. Other parameters entering the
model, namely, the static dielectric constant and the surface
tension of the solvent, are physical constants taken from ex-
periments. We have actually kept �0 as the single degree of
freedom to fit the solvation energy, while fixing the value of
	 to 1.3 as in Ref. 30. This choice of 	 provides a smooth,
numerically convenient transition for the step function, still
ensuring that the lower and upper limits of ����r�� and
����r�� are reached reasonably fast. The parameter �0 was
obtained from a linear least-squares fit to the hydration en-
ergies of three solutes: amide, nitrate, and methylammonium
�a polar molecule and two ions of opposite sign�. The result-
ing value �0=0.000 78 was employed thereafter in all the
simulations. This can be regarded as a rather universal choice
for �0 and 	; reparametrizations for different solvents could
be considered �if enough experimental data were available�
probably gaining some marginal accuracies at the expense of
generality.

Table I shows the solvation and cavitation energies in
water calculated for a number of neutral species, along with
their experimental values.55–57 A quite remarkable agreement
with experiments is found. We compare the data with the
PCM results obtained at the DFT-PBE/6-311G�d , p� level
�or DFT-PBE/3-21G** for the case of Ag+� using the GAUSS-

IAN 03 package.58 Also significant is the accord between the
cavitation energies computed with the two methods—with
the caveat that in GAUSSIAN-PCM �Gcav is based on the
Pierotti-Claverie formula �see Eq. �8�� which requires a
lengthy list of parameters including all var der Waals radii.
Similar agreement between the values of �Gcav coming from
our approach and PCM is found among charged solutes, as
shown in Table II. The level of accuracy in �Gsol is in this
case as good as for the neutral solutes, if viewed in relative
terms �we point out that, regarding the experimental values
of �Gsol reported for ions, discrepancies between sources up

FIG. 1. Cavity area of a water molecule as a function of � �thickness
parameter used to evaluate the area, see text� for several values of the
electronic density threshold �0.
to a few kcal/mol are common�. As for the performance of
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GAUSSIAN �Tables I and II�, it is fair to note that the PCM
parameters included in this code have been optimized for
Hartree-Fock calculations, and therefore the accuracy of
PCM in combination with DFT may be slightly below the
optimal results expected from GAUSSIAN at the Hartree-Fock
level.

The solvation energies of the ionic solutes showed in
Table II were calculated including the Makov-Payne
correction,59 which takes into account how the gas phase
energy of a charged system is affected by its periodic images
in supercell calculations,

Egas = EPBC +
q2�

2L
−

2�qQ

3L3 + O�L−5� , �15�

where Egas and EPBC are the isolated and the supercell ener-
gies, respectively, q is the charge of the system, Q is its
quadrupole moment, L is the lattice parameter, and � is the
Madelung constant �we used a simple cubic lattice of
charges, for which �=2.8373 �Ref. 60��. As shown in Fig. 2
for the nitrate anion, the dependence of the energy with re-
spect to the inverse of the lattice parameter becomes virtually
linear for L above 40 a.u., pointing out that the quadrupole
term can be neglected in supercells of that size or larger. So,

TABLE I. Solvation and cavitation free energies �kcal/mol� for neutral sol-
utes in water, calculated with this model and with PCM as implemented in
GAUSSIAN 03.

�Gsol �Gcav

Expt.a This model PCM This model PCM

H2O −6.3 −8.4 −5.4 5.7 5.7
NH3 −4.3 −3.2 −1.6 6.6 6.6
CH4 2.0 5.4 6.9 7.5 10.0
CH3OH −5.1 −3.6 −0.8 9.0 9.6
CH3COCH3 −3.9 −1.7 3.5 13.7 14.3
HOCH2CH2OH −9.3 −9.3 −6.7 13.0 12.3
CH3CONH2 −9.7 −10.5 −4.6 12.7 12.8
CH3CH2CO2H −6.5 −6.0 −2.4 14.8 14.6
Mean unsigned error 1.5 4.0

aReferences 55–57.

TABLE II. Solvation and cavitation free energies �kcal/mol� for ionic sol-
utes in water, calculated with this model and with PCM as implemented in
GAUSSIAN 03.

�Gsol �Gcav

Expt.a This model PCM This model PCM

Cl− −75 −66.9 −72.6 7.9 5.8
NO3

− −65 −57.8 −62.6 10.5 9.7
CN− −75 −64.8 −70.2 8.4 7.0
CHCl2CO2

− −66 −74.7 −53.5 16.3 15.7
Ag+ −115 −110.0 −102.3 5.7 4.0
CH3NH3

+ −73 −81.0 −65.1 9.4 10.2
CH3�OH�CH3

+ −64 −70.6 −55.2 13.5 14.4
C5H5NH+ �pyridinium� −58 −60.8 −59.0 15.0 13.9
Mean unsigned error 7.1 6.6

a
References 55–57.
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we applied the Makov-Payne correction to the 1/L leading
order to all the cations and anions in Table II, always check-
ing for convergence with respect to 1/L. The gas phase en-
ergies calculated in this way were subtracted from the corre-
spondent energies in solution to obtain �Gsol. Figure 2 also
shows that the total energies in solution quickly converge
with respect to the size of the supercell, thanks to the dielec-
tric screening of the Coulombic interactions between peri-
odic images.

With the exception of CH4, the solutes in Tables I and II
are either polar or ionic compounds of relatively small size.
Since the dispersion-repulsion energy is not explicitly ac-
counted for in our model, its accuracy for systems in which
this contribution becomes dominant, such as highly hydro-
phobic or aromatic compounds, will be necessarily affected
�this is already the case for methane�. For the species listed
in Tables I and II the dispersion-repulsion effect is captured
to a large extent by our electrostatic term. As the size of the
solute increases and its polarity decreases, though, the non-
electrostatic terms tend to monopolize the solvation energy,
and a model lacking the dispersion-repulsion contribution
will perform poorly. This limitation could be possibly over-
come by a different parametrization specific to large nonpo-
lar solutes or of course by directly computing the dispersion
and repulsion contributions.38,39 To illustrate the conse-
quences of explicitly neglecting the dispersion-repulsion
term in nonpolar species, we have examined the cases of
dichloromethane and benzene, with experimental solvation
energies of −1.4 and −0.9 kcal/mol, respectively. According
to PCM, �Gsol is +0.2 kcal/mol for dichloromethane and
−0.1 kcal/mol for benzene, in much better agreement with
experiments than the values provided by our electrostatic-
cavitation model: +4.0 kcal/mol for dichloromethane and
+7.9 kcal/mol for benzene. We note that the cavitation ener-
gies coming from both approaches are still very close to each
other �12.8 vs 11.5 kcal/mol in the case of CH2Cl2 and 15.8
vs 14.2 kcal/mol in the case of C6H6�; the discrepancies in
�Gsol are, then, due to the relatively large dispersion-
repulsion contribution, that the electrostatic term in our
model is unable to capture for these species. PCM gives a

FIG. 2. Total energy of the NO3
− anion as a function of the inverse of the

lattice parameter, computed in vacuum, in solution, and in vacuum with the
Makov-Payne correction up to the leading order.
dispersion-repulsion energy of −8.5 kcal/mol for dichlo-
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romethane and −10.3 kcal/mol for benzene, that largely
compensate the �positive� cavitation energies.

B. Molecular dynamics and total-energy conservation

As a computational test, we performed canonical
molecular-dynamics simulations of a tetramer of D2O mol-
ecules �heavy water�, using our solvation-cavitation model to
represent an aqueous solution. A time step of 0.192 fs and an
electronic mass of 400 a.u. were employed, and the system
was thermalized at 350 K by applying the Nose-Hoover ther-
mostat on the ions. Figure 3 shows the initial configuration
of the cluster, where the four D2O molecules are stabilized in
a ring by four hydrogen bonds. In the upper part of Fig. 4,
the total energy is monitored throughout the run and com-
pared with the potential energy. The conservation of the total
energy is as good as in the gas phase for the same simulation
parameters and is not affected by the dissociation of the
bonds. The analysis was not pursued beyond 0.65 ps, when

FIG. 3. Cluster of D2O molecules used as starting configuration in the
molecular-dynamics simulations which results are reported in Fig. 4.

FIG. 4. Total and potential energies �top� as a function of time in a
molecular-dynamics simulation of a cyclic tetramer of heavy water in aque-
ous solution. The total energy contains the contribution of the Nose-Hoover
thermostat. The four curves starting at the bottom of the graph represent the
evolution of the intermolecular O¯H distance between the atoms initially

involved in hydrogen bonds.
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the water cluster dissolves into the medium and one of the
D2O molecules evolves close to the border of the real-space
grid, affecting the Dirichlet boundary conditions.

In the lower section of Fig. 4, the intermolecular O¯H
distance is plotted for the four initial hydrogen bonds that
keep the cluster bound. The solvent dissociates this structure
early in the simulation, and before half a picosecond only
one hydrogen bond has survived. By the end of the run a
dimer is what remains of the original tetramer. For compari-
son, long molecular dynamics �up to 10 ps� were carried on
in the gas phase under identical conditions. In this case the
cyclic cluster is stable for the full length of the simulation,
showing that the disruption of the intermolecular bonds is
indeed a consequence of the solvation effect.

C. Dimerization of TCNE anions in solution

Starting in the early 1960s, dimerization of charged and
neutral organic � radicals in solution and in the solid state
was reported by several authors.61–67 The discovery of this
phenomenon prompted a vast amount of research which has
continued up to the present day.31,68–72 Among the systems
addressed, significant efforts have gone into the study of the
tetracyanoethylene anion �TCNE�− and its salts because of
their central role in the understanding and development of
molecular metals. Recently, evidence has been presented
showing that the dimerization of �TCNE�− in the solid state
involves two-electron four-center �*–�* bonding arising
from the interaction of the two singly occupied molecular
orbitals �SOMOs� of the anions and leading to long
��3.0 Å� intermonomer C–C covalent bonds.68,69 Data from
UV-vis and EPR spectroscopies suggested the same conclu-
sions are true in the solvated state.31,69 In the gas phase, DFT
and MP3 calculations show that the dimer is only metastable,
since the attractive covalent interaction between the anions is
outweighed by the Coulombic repulsion.68,69,72 In the solid
state, in contrast, the positive counterions stabilize the array
of like charges, allowing the �*–�* bonding to occur.68,69

A solvent may play an analogous role in stabilizing the
dimer, by favoring the concentration of charge in a single
cavity. We used our solvation model to fully optimize the
doubly charged TCNE dimer73 in dichloromethane, properly
adapting the values of � and 
 �8.93 and 27.20 mN/m, re-
spectively�. We found a stable minimum at an equilibrium
distance of 3.04 Å, in close agreement with solid-state ge-
ometries: X-ray data of different salts74–76 range from
2.83 to 3.09 Å. The CN substituents deviate from the plane
by 5° �see Fig. 5�, consistently with the NC–C–C–CN dihe-
dral angles observed in crystals, between 3.6° and 6.5°. This
deviation has been ascribed to the rehybridization of the sp2

carbon as the intradimer bond is formed,68 but its origin
could be also tracked to the steric repulsion between the CN
moieties facing each other.

Figure 6 �upper panel� shows the binding energy for the
�TCNE�2

2− in dichloromethane as a function of the separation
between the �TCNE�− fragments. At every point, all coordi-
nates were relaxed while freezing the intradimer distance.
The curve presents a steep minimum at 3.04 Å, with a bar-

rier to dissociation of nearly 4 kcal/mol. The grouping of
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two monomers inside a single cavity, of an area smaller than
the one corresponding to two separate cavities containing
one monomer each, is energetically favored by the surface
tension of the solvent. Thus, if the contribution of the cavi-
tation energy to the solvation is not considered, the binding
results weaker, as seen in Fig. 6. The surface of the cavity,
plotted in the lower panel, increases gradually as the mono-
mers are pulled apart, until the solvation cavity splits into
two at around 5 Å. �This is a case in which different 	 in the
parametrization could account for the distinctive ability of
solvents to penetrate narrow spaces.� Beyond this point the
total surface remains constant as each �TCNE�− unit occu-
pies a separate cavity, and the two curves in the top panel
merge. The ground state of the system is a singlet for dis-
tances up to 4.0 Å, whereas at larger separations the spins of
the fragments are no longer paired, conforming to a triplet
state.

A value of −1.1 kcal/mol is obtained for the binding
energy between the monomers. Such a value is underesti-
mated with respect to the experimental dimerization enthalpy
�HD reported in the range of −6.9 to −9.8 kcal/mol in
dichloromethane.31 The disagreement can be partially attrib-
uted to the inability of DFT to fully account for the correla-
tion energy involved in the �*–�* bond, and also, to some
extent, to the effect of the counterions present in the solution,
which differentially stabilize �TCNE�2

2− compared to two
�TCNE�− anions. This effect has been advocated in a recent
study72 of the interaction of two �TCNE�− fragments in tet-
rahydrofuran ��=7.58� using PCM at the MP2 level, to ex-
plain why the dimer was found metastable by 9.7 kcal/mol
with respect to the isolated monomers—the experimental es-
timate for �HD being −8 kcal/mol in
2-methyl-tetrahydrofuran.65 The binding-energy curve pre-
sented in that work exhibited a broad minimum extending

FIG. 5. Optimized structure of a dimer of �TCNE�− in dichloromethane,
enclosed by an electronic density isosurface at 0.000 78e delimiting the
solvation cavity. Carbon atoms in light gray and nitrogen atoms in dark.
from 3.1 to 3.7 Å, a separation range substantially larger
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than the one observed in the solid state. Our own PCM cal-
culations in dichloromethane, using PBE in combination
with the 6-311+G�d , p� Gaussian basis set, yield a meta-
stable dimer with an interaction energy of 3.2 kcal/mol and
an equilibrium distance of 3.00 Å.

Temperature dependence investigations in solution indi-
cate that the dissociated �TCNE�− anions are the predomi-
nant species at ambient conditions, and that the concentration
of the dimer rapidly grows as the temperature goes
down.31,69 Car-Parrinello molecular-dynamics simulations of
the �TCNE�2

2− dimer were performed in dichloromethane at
250 K, with the temperature controlled by the Nose-Hoover
thermostat on the ions. A time step of 0.288 fs and an elec-
tronic mass of 400 a.u. were used. In Fig. 7, we monitor the
evolution of two structural parameters which serve as de-
scriptors of the �TCNE�−– �TCNE�− bonding. The intradimer
separation, departing from a value of 3.9 Å corresponding to
an initially elongated dimer, drops to nearly 2.7 Å and then
describes large oscillations in the order of 1 Å around the
equilibrium distance. The second parameter, corresponding
to the CvC¯CvC dihedral angle formed by the two
�TCNE�− anions, provides a measure of the alignment be-
tween the monomers: if this angle is zero the anions lay
parallel. Figure 7 shows that this is not the case most of the
time. Rapid oscillations of an average amplitude of 6° take
place around the equilibrium angle. During most of the sec-
ond part of the run the oscillations are not necessarily cen-
tered around zero, which is indicative of the relatively lax
nature of the bond.

FIG. 6. Upper panel: binding energy of two �TCNE�− anions in dichloro
contribution to the solvation energy and with both the electrostatic and cavit
separation between the �TCNE�− anions. Above 5 Å the cavity splits, and th
each.
The length of the simulation is enough to reveal some
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distinctive features of the frequency spectrum of the system
in the IR region. The continuous line in Fig. 8 shows the
Fourier transform of the velocity-velocity correlation func-
tions corresponding to two pairs of atoms in the dimer. The
first pair consists of the two carbon atoms involved in the
CvC bond. The autocorrelation function of the relative ve-
locity between these two centers originates an intense peak
corresponding to the CvC stretching at 1250 cm−1. The
same mode resolved in the case of the monomer �dashed
line� shows up at 1310 cm−1. In the solid state, experimental
CvC stretching frequencies of 1364 and 1421 cm−1 have
been reported for the dimer and the monomer, respectively.69

ane as a function of its separation, calculated with only the electrostatic
contributions. Lower panel: area of the solvation cavity as a function of the
tted values correspond to the area of two cavities containing one �TCNE�−

FIG. 7. Time evolution of the intradimer separation �top� and the angle
determined by the central CvC axes of the two monomers �bottom� during

2−
meth
ation
e plo
a molecular-dynamics simulation of �TCNE�2 in dichloromethane.
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Such discrepancies between our results and the experimental
numbers are expected, given the distinct conditions in the
solid and liquid environments, the difference in the tempera-
tures at which the spectroscopic and the computational data
were collected, the use of DFT, and the slight downshift in
ionic frequencies in Car-Parrinello dynamics.77 However, we
note that the shift of 60 cm−1 in going from the monomer to
the dimer is nicely reproduced by our simulations.

In an attempt to characterize the frequency of the in-
tradimer �*–�* bonding, we have also analyzed the relative-
velocity autocorrelation function for the two carbon atoms
forming the bond, one atom pertaining to each monomer.
The frequency spectrum of this function yields the four
groups of signals appearing below 600 cm−1 in Fig. 8, the
assignment of which is less evident than in the case of the
CvC stretching. Although we are unable to unambiguously
identify all these frequencies, Fourier transform analysis of
the autocorrelation function for the velocity of the center of
mass of the two fragments �data not shown� points to the
lowest frequency emerging in the spectrum, at 65 cm−1, as
the one related to the intradimer vibration. To the best of our
knowledge, no experimental data are available for this mode.
Interestingly enough, though, the aforementioned theoretical
study based on PCM and MP2,72 predicted an interfragment
vibrational frequency of 60 cm−1 by solving the one-
dimensional Scrödinger equation on the potential-energy sur-
face calculated for the interaction between the �TCNE�− an-
ions.

IV. FINAL REMARKS

The electrostatic-cavitation model described in this work
enables Car-Parrinello molecular-dynamics simulations in a
continuum solvent for large finite systems and shows a level
of accuracy as good as that offered by state-of-the-art
quantum-chemistry solvation schemes. Additionally, our
model is suited for the treatment of periodic systems in so-
lution, representing a powerful tool for the study of solid-
liquid interfaces, solvated polymers, and in general extended

FIG. 8. Characteristic frequencies of the TCNE monomer and dimer ex-
tracted from the velocity autocorrelation functions for selected pairs of
atoms.
systems in contact with a solution. Further improvements
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will be the subject of future work, especially the incorpora-
tion of the dispersion-repulsion effects, which become in-
creasingly important with the size of the solute. The method
of Refs. 38 and 39 is an attractive choice, although other
possible approaches derived from first principles and em-
ploying a minimal number of parameters are also envisioned.

Our cavitation energy, defined in a simple and physical
way, can be straightforwardly implemented in plane waves
or real-space codes. Interestingly, such definition turned out
to be in remarkable agreement with the values provided by
more complex algorithms reliant on large sets of parameters.
We think that this constitutes an independent proof of the
reliability of both the statistical-mechanics approach of
Pierotti and Claverie and the phenomenological models
based on the macroscopic surface tension of the solvent,
compounding, to some extent, a reconciliation in the context
of the long debate confronting the two viewpoints.

The real time study of the pairing of �TCNE�− consti-
tutes the first dynamical ab initio investigation of dimeriza-
tion phenomena in solution, of which the formation of the
�TCNE�2

2− is just one example. The binding of charged radi-
cals in solution is relevant to a broad field of research in
organic and materials chemistry, and proper consideration of
the cavitation contribution turns out to be a central ingredient
for an accurate atomistic description.
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APPENDIX: ENERGIES AND FORCES IN PERIODIC
BOUNDARY CONDITIONS

We summarize here the relevant steps to calculate ener-
gies and forces in the framework of pseudopotential codes in
periodic-boundary conditions, highlighting the additional
terms arising from the electrostatic embedding. Leaving
aside the exchange-correlation energy and the nonlocal term
of the pseudopotential, the electrostatic problem in a system
of pseudoions �nuclei plus core electrons� and valence elec-
trons may be written as35

E = �
I�J

ZIZJ

RIJ
+ �

I
� �e�r��loc�r − RI�dr

+
1

2
� � �e�r��e�r��

�r − r��
drdr�. �A1�

The first term on the right of Eq. �A1� accounts for repulsion
between pseudoions, the second is the interaction between
these ions and the valence electron density, and the third is

the Coulombic integral between valence electrons. Let �I�r
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−RI� be a Gaussian distribution of negative sign that inte-
grates to the total charge of the pseudoion �note that the
electronic charge is defined here as positive�. Adding and
subtracting �I�I�r−RI� from �e�r� in the third term we obtain

E =
1

2
� � ��e�r� + �

I

�I�r − RI�
��e�r�� + �

I

�I�r� − RI� 1

�r − r��
drdr�

−� � �e�r���
I

�I�r� − RI� 1

�r − r��
drdr�

−
1

2�
IJ
� � �I�r − RI��J�r� − RJ�

1

�r − r��
drdr�

+ �
I
� �e�r��loc�r − RI�dr + �

I�J

ZIZJ

RIJ
. �A2�

The first term on the right is the Hartree energy EH of a
pseudopotential code. Introducing the following definitions:

EH =
1

2
� � ��e�r� + �

I

�I�r − RI�
��e�r�� + �

I

�I�r� − RI� 1

�r − r��
drdr�,

Eps = �
I
� �e�r���loc�r − RI� + �I�r − RI��dr,

with �I�r� = −� �I�r��
�r − r��

dr�,

Esr = − �
I�J

� � �I�r − RI��J�r� − RJ�
1

�r − r��
drdr�

+ �
I�J

ZIZJ

RIJ
,

Eself = −
1

2�
I
� � �I�r − RI��I�r� − RI�

1

�r − r��
drdr�,

it is possible to write the total energy as

E = EH + Eps + Esr + Eself. �A3�

The pseudoions density �I is defined as

�I�r − RI� = −
ZI

�RI
c�3�−3/2 exp�−

�r − RI�2

�RI
c�2 � , �A4�

where RI
c determines the width of the Gaussian associated

with the site I. Under such definition Eself and Esr can be
evaluated analytically. In particular, Eself is a constant not
dependent on the atomic positions,

Eself = −
1

�2�
� ZI

2

Rc , �A5�

I I
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Esr = �
I�J

ZIZJ

RIJ
erfc� RIJ

��RI
c�2 + �RJ

c�2� . �A6�

The remaining pseudopotential term Eps is computed in re-
ciprocal space, after constructing the pseudopotential �loc

I

carrying both contributions from the local pseudopotential
�loc and the smeared core charge potential �I,

Eps = �
I
� �e�r��loc

I �r�dr , �A7�

�loc
I �r� = �loc�r� + �I�r� = �loc�r� −� �I�r��

�r − r��
dr�

= �loc�r� −
ZI

r
erf� r

RI
c� . �A8�

The ionic forces can be obtained from the energies above
�plus the nonlocal pseudopotential term, which will be omit-
ted for simplicity�. The Hellmann-Feynman theorem—i.e.,
the stationarity of the total energy with respect to �—gives

FI = −
dE

dRI
= −

�E

�RI
− �

j

�E

��� j�
��� j�
�RI

=
�E

�RI
�A9�

�real wave functions are assumed�. Thus,

−
dE

dRI
= −

�E

�RI
= −

�EH

�RI
−

�Eps

�RI
−

�Esr

�RI
−

�Eself

�RI
. �A10�

Note that the partial derivatives of the individual terms in the
Hamiltonian do not correspond to the total derivatives. For
example,

�EH�R1,R2, . . . ,Rn�
�Rn

�
dE

dRI

= lim
�→0

EH�R1,R2, . . . ,Rn + �� − EH�R1,R2, . . . ,Rn − ��
2�

.

Eself does not depend on RI and therefore does not contribute
to the forces, whereas the derivative for Esr can be obtained
analytically.

The derivative of Eps results to

�Eps

�RI
= �

I
� �e�r�

��loc
I �r�
�RI

dr , �A11�

where the term ��loc
I �r� /�RI is straightforward in the recipro-

cal space,

�loc
I �r − RI� = �

G
�̃GeiGre−iGRI,

�A12�
�

�RI
�loc

I �r − RI� = �
G

− iG�̃GeiGre−iGRI,

with �̃G being the coefficients of the Fourier expansion for
I
�loc�r�.
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Finally, to obtain the contribution from EH, the Hartree
energy is recast as

EH =
1

2
� � ��e�r��e�r�� + �

I

�I�r − RI��
I

�I�r� − RI�

+ 2�e�r��
I

�I�r� − RI� 1

�r − r��
drdr�,

whose derivative with respect to the atomic positions is

1

2
� � �2�

I

�I�r − RI�� �

�RI
�

I

�I�r� − RI�� + 2�e�r�

� �

�RI
�

I

�I�r� − RI�� 1

�r − r��
drdr�

=� � � �

�RI
�

I

�I�r� − RI��
��e�r� + �

I

�I�r − RI�� 1

�r − r��
drdr�.

Hence, if �tot�r�=�e�r�+�I�I�r−RI�, the contribution from
EH turns out to be

�EH

�RI
=� � �tot�r�

�r − r��� �

�RI
�

I

�I�r� − RI��drdr�, �A13�

where the term ��I�I�r�−RI� /�RI is obtained in Fourier
space in the same fashion as in Eq. �A12�. The ratio
�dr��tot�r� / �r−r�� is the Hartree potential VH, which can be
computed in the reciprocal space from the expansion for
�tot�r�,

�tot�r� = �
G

�̃GeiGr, VH = �
G

	̃GeiGr,

�2VH = − 4��tot Þ 	̃G = −
4�

G2 �̃G, �A14�

VH = �
G

− 4�

G2 �̃GeiGr.

In the case of the continuum solvent implementation, VH

is replaced by �Ees /���r� according to Eqs. �5� and �6� of the
main text. The electrostatic contribution to the energy origi-
nated in the dielectric medium is computed as

Ees =� �e�r���r�dr , �A15�

where ��r� is the electrostatic potential obtained using the
multigrid in Eq. �3�. The Hartree term EH is thus replaced by
Ees in the calculation of the total energy. The cavitation en-
ergy is accounted properly in the total energy by adding 
S,
which functional derivative �Eq. �14�� is included in the
Kohn-Sham potential—as the Hellmann-Feynman theorem
applies for that term.
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